Atomic structure

Topics covered •Atomic structure •Subatomic particles •Atomic number •Mass number •Charge •Charge •Cations •Anions •Isotopes •Average atomic mass •Practice questions atomic structure

Sub atomic particles

Name	charge	Mass	Location		
Proton	+1	1 amu	Nucleus		
Electron	-1	0	Electron cloud		
Neutron	0	1 amu	Nucleus		

Atomic structure

 Protons and neutrons are located in a small area in the center of the atom called the Nucleus. Electrons are located around the outside called clouds.

Truth vs. Myth

Truth

- Nucleus is located in the center but much smaller
- Electrons
 have energy
 levels

Myth

 Electrons do not travel around the nucleus like planets.

Atomic structure: Atomic number

- Atomic number: Represents the number of Protons in an atom.
- Why is the Atomic number important?
 - The number of protons determines the element.
 - The periodic table is ordered by increasing protons.

Atomic structure: Atomic number

- Example:
- Oxygen has 8 protons
- The number of neutrons and electrons can and will vary.
- Altering the neutrons will change the overall mass.
- Altering the electrons will change the charge.

Atomic Characteristics: Mass number

- Mass Number
 - Describes the mass of an individual atom.
 - Since only Protons and Neutrons have mass all the mass is located in the nucleus.
 - Each neutron and proton has a mass of 1 amu therefore the addition these particles will give the total mass.
 - Mass number = protons + neutrons

Atomic Characteristics: Mass number

• Why is the mass number is not located on the periodic table. Why?

Atomic characteristics: mass number

• Why is the mass number not located on the periodic table. Why?

 Because this describes a SINGLE atom and we are always dealing with many more atoms then just one.

Isotopes

2 atoms with the same number of protons but different number of neutrons

- Atoms of a single element can vary in weight.
 - Protons must stay constant.
 - Neutrons can vary.
 - The first drawing has one proton (red) and one neutron for a mass of 2.
 - The next picture only has a proton form a mass of 1

Hydrogen (Deuterium) Atomic Mass = 2 Atomic Number = 1

Hydrogen Atomic Mass = 1 Atomic Number = 1

Average atomic mass

• The Atomic mass of Chlorine is 35.45.

Q: Is there actually an atom of Chlorine with a mass of 35.45?

Average atomic mass

• The Atomic mass of Chlorine is 35.45.

Q: Is there actually an atom of Chlorine with a mass of 35.45?
Nope only 35 and 36. So why the decimal?

Let's take a look

• Chlorine: How many Protons?

Let's take a look

Chlorine: How many Protons? 17
 How many Neutrons?

If the mass number = 35

If the mass number of 36

Let's take a look

Chlorine: How many Protons? 17
 How many Neutrons?

If the mass number = 35 Neutrons = 18

If the mass number of 36 Neutrons = 19

Average atomic masses

1^{st –} When we mass out a sample we are getting a mixture of different isotopes. Some heavier... some lighter

2nd – Scientists have actually measured in the abundance of different isotopes and determined the average mass for CI is 35.47.

Isotope	Half Life
CI-35	Stable
CI-36	301000 years
CI-37	Stable
CI-38	37.2 minutes

Find the element Te on the periodic table. Atomic #43 What is different about this element as apposed to its neighbors?

Every day example

 A student receives a 84.6% This is a B but the student never actually scored a B on any assignments.

How is this possible?

Everyday example cont.

 The student scored on many assignments. Some where higher then a B and others where lower then a B. The average score is a B

assignment	grade
1	100%/A+
2	50%/F
3	75%/C
4	98%/A
5	100%/A+
average	84.6/B

What two subatomic particles contain a charge?

What two subatomic particles contain a charge?

Protons = +1
 Electrons = -1

- How do you figure out the charge on an atom?
 - If the protons = electrons the charge is zero.

Each + cancels out a –

• Charge = p - e

- An atom of oxygen has 9 electrons what is the charge?
 - Oxygen
 - Protons = 8 +'s
 - Electrons = 9 s
 - 8 + protons cancel out the charge of 8 electrons.
 - Resulting in a left over 1 electron not canceled out.
 - Therefore this atom is -1 in charge.

Charges Cancel out Net charge = -1

Cation = positive ion Pronounced: "cat + ion"

Anion = negative ion

Charged particles

- Ion: Charged particle
- Anion: Negativly charged particle
- Cation: Positivly charged particle.

Behavior of protons and electrons

- Very important:
 - Atoms can easily lose or gain electrons and this will alter the charge.
 - Atoms can NOT easily gain or lose protons. This would require a nuclear reaction.
 - If an atom is to acquire a negative charge it will need to do this?
 - If an atom is to acquire a positive charge it is going to have to do this?

Practice making ions Protons NEVER move any change of charge is relative to the number of electrons. $Zn^{o} \rightarrow Zn^{2+}$ What happened here? $Zn^{\circ} \rightarrow Zn^{2+} + 2e^{-}$ $2F^{-} \rightarrow F_{2}$ What happened here? $2F^- \rightarrow F_2 + 2e^-$

Atomic Structure Practice

Symbol	atomic #	Mass #	р	n	е	Charge	Avg. atomic
0				8		0	
	12	22			13		
			5	4		-2	

Give the rest a try!

Answers

Symbol	atomic #	Mass #	р	n	е	Charge	Avg. atomic
0	8	16	8	8	8	0	15.99
Mg	12	<mark>22</mark>	12	10	13	-1	24.31
В	5	9	5	4	7	-2	10.81

- Uranium and plutonium are the only two radio active materials known today that can react to create a mushroom cloud like explosion.
- Plutonium is so highly radioactive it is hard to handle.
- Uranium is found in nature
- Hence Uranium is the material of choice.

- Uranium 238 Fairly stable isotope found in nature.
- Uranium -235
 - U-235 is said to be very fissile or it spits very easily. It breaks down when energy is applied this energy that is given off hits other U-235 atoms and which sets off other reactions.
 - Chain reaction.
 - This amount of energy can be produced by simply slamming two pieces of uranium together. (Hiroshima)
 - US government considers uranium of 20% U-235 enriched.
 - 90% or highly enriched uranium is needed for nuclear weapons.

- How do you enrich uranium.
 - 1st Isotopes of an element react chemically the same. Meaning that chemical reactions can not distinguish between isotopes.

 2nd since the mass is larger it can be separated via a centrifuge.

- How does a centrifuge work?
- Spins item in circles.
- Ever been on the carnival ride the Gravitron or Cajun Cliffhanger at Six flags.
- Since F = mass * acceleration the particle with larger mass is pulled on with a greater force.

Alexander Litvinenko poisioned by polonium -210

- Polonium-210 is highly radioactive with a half life of 138 days. A very small amount, about the size of a pin head, would be enough to kill an exposed person.
- Exposure means swallowing or inhaling; although polonium-210 releases large amounts of alpha particles as it decays, these particles would not for example be able to penetrate your skin.

